# OCIMS

### A Federated Marine Data Management And Decision Support System For South Africa

The Architectural Tale Of An Open Standards, Open Source And Open Data Stack

> Graeme McFerren Raymond Molapo Bryan McAlister

#### An unfortunate elephant metaphor...



**Created by TRAVIS BIRD from the Noun Project** 







Science and Technology REPUBLIC OF SOUTH AFRICA



- overall strategic & policy direction, leadership, management and support of integrated coastal management;
- set up and implement ocean conservation strategies & advancement of South Africa's interests in the high seas and Antarctica;
- provide specialist support for Oceans & Coastal monitoring, reporting and evaluation policies

science



#### environmental affairs

Department: Environmental Affairs **REPUBLIC OF SOUTH AFRICA** 



& technology
Department:
Science and Technology
REPUBLIC OF SOUTH AFRICA



- Enhance oceans, coastal and maritime governance and sustainable utilisation through
  - monitoring of environmental variables and human socio-economic activity,
  - compliance and enforcement,
  - planning and assessment,
  - information dissemination.



#### environmental affairs

Department: Environmental Affairs **REPUBLIC OF SOUTH AFRICA** 



& technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA

science



## Requiring an IMS...

- Oceans and Coasts IMS provides facilities for
- a) publishing of,
- b) discovery of,
- c) access to,
- d) interaction with
- e) and management of:
- 1) data and content services,
- 2) decision support tools and applications
- 3) information dissemination channels
- 4) information technology services



environmental affairs Department: Environmental Affairs REPUBLIC OF SOUTH AFRICA





science



# OCTMS





environmental affairs

Department: Environmental Affairs REPUBLIC OF SOUTH AFRICA



science & technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA



# OCIMS





environmental affairs

Department: Environmental Affairs **REPUBLIC OF SOUTH AFRICA** 



& technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA



- Turns out, theres much complexity
  - Multiple organisations and stakeholders
  - Only sometimes are there existing systems or components
  - Existing systems not really interoperable or even available
  - Some systems suffer the common problems of being run by scientists ... (fit-for-purpose, data hoarding, overly detailed, non-production quality, etc.)







# OCIMS Architectural Description

- To start making sense of this complexity
  - describing and understanding the properties of the system
  - describing principles of the system
  - supporting the planning, construction and ongoing evaluation of the eventual system
  - the communication about the system amongst stakeholders







#### AIG **Architectural Description**

- Utilised the architectural viewpoints of RM-ODP\*, with emphasis on distributed services rather than just distributed objects of computation
  - User requirements for a multi-organisation hosted system, rather than a greenfields cloud system, for e.g.
  - But this was not a deep formal exercise in waterfall system design, rather a guide and reminder to look at OCIMS from a multidue of angles

echnology





\*http://www.rm-odp.net/



#### AIG **Architectural Description**

- Utilised the architectural viewpoints of RM-ODP\*, with emphasis on distributed services rather than just distributed objects of computation
  - User requirements for a multi-organisation hosted system, rather than a greenfields cloud system, for e.g.
  - But this was not a deep formal exercise in waterfall system design, rather a guide and reminder to look at OCIMS from a multidue of angles

echnology





\*http://www.rm-odp.net/



#### NATIONAL CIMS **Architectural Description**



Marcel Douwe Dekker (https://commons.wikimedia.org/wiki/File:RM-ODP\_viewpoints.jpg), "RM-ODP viewpoints", https://creativecommons.org/licenses/by-sa/3.0/legalcode





Department: Science and Technology **REPUBLIC OF SOUTH AFRICA** 



## Architectural Description

| Viewpoint   |            | Concerns                                                                                                                               |  |
|-------------|------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Enterprise  |            | Functional, non-functional requirements, users, stakeholders, policies                                                                 |  |
| Information | $\diamond$ | Information assets (formats, schemas) and constraints on their use                                                                     |  |
| Computation | 0          | Computational elements - service/resource endpoints, databases, data transports, processing engines                                    |  |
| Engineering |            | Deployment and distribution descriptions                                                                                               |  |
| Technology  | *          | Specific software, algorithms, hardware that <u>realised just table row</u> ation over information instances using deployment topology |  |







# OCTMS

## Architectural Description

#### **Interaction Layer**

Search & discoverAccessVisualiseQueryPublishDecideDisseminate

#### **Production Layer**

Models Simulations (Meta)Data Accumulations
Mediation services - e.g. data transforming or data cascade/proxying.
Harmonisation processes - e.g. combining data from different sources into integrated and consistent information products.
Generation services - e.g. event processing and notification services, reports

#### **Acquisition Layer**

Acquiring data from: Databases Files Direct Readout Services

Data Streams e.g from sensors or sensor networksData ServicesDownload Services



environmental affairs

REPUBLIC OF SOUTH AFRICA







# OCTMS Architecture departure point

#### Principles of:

- Interoperability
- Reuse
- Accessibility
- Protocol
- Industry Good Practice
- Openness

#### Deployed to:

- Impactful Applications
- Large data holdings

- **Providing insight into:**
- Choosing (hopefully) sustainable Tools & Services;
- Linking them together;
- Orchestrating their execution over local, remote and distributed compute resources



**Applied To:** 

- Data

- Software



environmental affairs

Department: Environmental Affairs **REPUBLIC OF SOUTH AFRICA** 



Department: Science and Technology REPUBLIC OF SOUTH AFRICA

science

& technology



- Glue is open standards based systems based on
  - OGC,
  - Unidata,
  - WMO
  - Plus a few de facto e.g. ESRI
- Historically the marine IT community from science to application has been fragmented and this represents a farily bold attempt at interoperability.
- And a chance for FOSS4G tools to shine!







#### **Integrated Vessel Tracking**

### OCIMS

OCIMS





#### environmental affairs

Department: Environmental Affairs **REPUBLIC OF SOUTH AFRICA** 



Department: Science and Technology **REPUBLIC OF SOUTH AFRICA** 

& technology



:::

Search for ship name/mmsi/

### Harmful Algal Bloom & Aquaculture

Harmful Algal Bloom Viewer

NATIONAL DCIMS









& technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA

#### Daily Bloom Risk Historic Bloom Examples Doringbaai 2018-03-31 98 km<sup>2</sup> Doringbaai 2018-03-31 98 km<sup>2</sup> Galioenbaai 2018-03-31 7782 km<sup>2</sup> Jakkalsbaai 2018-03-31 530 km<sup>2</sup> Jakkalsbaai 2018-03-31 61 km<sup>2</sup> False Bay 2018-03-31 596 km<sup>2</sup> Houtbaai 2018-03-31 238 km<sup>2</sup> Walker Bay 2018-03-31 128 km<sup>2</sup> Sandown Bay 2018-03-31 87 km<sup>2</sup> Lambert's Bay 2018-03-31 260 km<sup>2</sup> Chlorophyll-A from MODIS SST (Fnd) Chlorophyll-A from Sentinel Algal Bloom Detections Odyssea Analysed nEL H OL CI Contact

Harmful Algal Bloom Risk

About



## Impactful Applications

### **Coastal Operations Support**

#### 0CIMS



## Coastal Hazard

DCIMS



### **Marine Spatial Planning**

NATIONAL OCIMS





#### environmental affairs

Department: Environmental Affairs **REPUBLIC OF SOUTH AFRICA** 



Department: Science and Technology REPUBLIC OF SOUTH AFRICA

& technology



#### **Coastal data viewer**

NATIONAL OCIMS





#### environmental affairs

Department: Environmental Affairs **REPUBLIC OF SOUTH AFRICA** 



& technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA



# OCIMS

## Data & Integration

# CKAN Core – single access point to data from organisations in the OCIMS federation



Map data © OpenStreetMap contributors Tiles by MapBox

#### Organizations ^

TRANSNET NATIONAL P... (70)

DEA (66)

WESSA (42)

SANBI (11)

**More Organizations** 



/

SEA STATE (71)

WATER QUALITY (43)

MARINE SPATIAL PLAN... (12)

MARINE DOMAIN AWARE... (2)

More Groups

| - |    |  |
|---|----|--|
| 2 | ue |  |
| a | yo |  |

٨

| 01 datasets found                                                                                                 | Order by: Relevanc                                 |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Potential HAB Outlines From Chlorop                                                                               | hyll-A extrapolated from NFL                       |
| •<br>Database of potential HAB areas derived from clustering above-th<br>NFLH algorithm and extrapolated CHLA for | reshold Chla values from CSIR localised thresholde |
| WMS WFS                                                                                                           |                                                    |
| S3a OLCI Chia, CSIR for South Africa                                                                              |                                                    |
| S3 OLCI WRR based ChI-A from CSIR algorithm on a 0.012 degreer                                                    | esolution grid , daily                             |
| WMS WCS                                                                                                           |                                                    |
| Significant Wave Height                                                                                           |                                                    |
| Earcoast aignificant wave beight for False Pay over a 0.001 degree                                                | e resolution grid, for a limited time period       |

Datacube accumulating the HDF data daily from CSIR localised thresholded MODIS Aqua NFLH algorithm and extrapolated CHLA for South African region

WMS WCS











# OCTMS



Department: Environmental Affairs **REPUBLIC OF SOUTH AFRICA** 



Department: Science and Technology REPUBLIC OF SOUTH AFRICA







- Several teams, but similar softwares
- Different development cycles
- Frequent releases to client
- Hosted environments
- Some dependency on data tiers e.g. SANs
- Architectural principles













- Not a microservices approach, but ...
- Multiple reusable, reconfigurable, removable containers
- Federation via standard interfaces and metadata in CKAN/ CSW, incl. Harvesting
- Support technologically weaker organisations:
  - Easy to stand up and support IT infrastructure
  - Facade legacy systems with standard services and harvestable endpoints – i.e. smaller instances of the overall architecture







# OCTMS

- This is a system that echoes "good" practices from the 2000's and 2010's
  - Technology white elephant hopefully avoided ;-)
- But what of the inevitabilities of working in the cloud, how does one describe such a system? Is this kind of architecture increasingly invalid?
- No toys!! Users need to have tools and data in their hands – massive stakeholder focus always needed.











Thank you

## Thanks for hearing me out

gmcferren@csir.co.za