An open source approach for the intrinsic assessment of the temporal accuracy, up-to-dateness and lineage of OpenStreetMap

Marco Minghini\(^1,\)\(^2\), Maria Antonia Brovelli\(^2\), Francesco Frassinelli\(^2\)

\(^1\) European Commission, Joint Research Center (JRC) - Ispra, Italy
\(^2\) Dept. of Civil and Environmental Engineering, Politecnico di Milano - Milan, Italy
OpenStreetMap (OSM)

- The most popular **Volunteered Geographic Information (VGI)** project:
 - started in 2004, currently featuring **4.8 million contributors**
 - largest, most detailed, complete & up-to-date global **spatial database**
 - available under the **Open Database License (ODbL)**
 - used by many actors/applications & **studied** by researchers
OpenStreetMap (OSM)

- The most popular **Volunteered Geographic Information (VGI)** project:
 - started in 2004, currently featuring **4.8 million contributors**
 - largest, most detailed, complete & up-to-date global **spatial database**
 - available under the **Open Database License (ODbL)**
 - used by many actors/applications & studied by researchers
OpenStreetMap (OSM) – Data model

• OSM makes use of a vector data model (geometries + attributes):
OpenStreetMap (OSM) – Data model

- OSM makes use of a vector data model (geometries + attributes):
 - geometries
 - **nodes**: single point objects
 - **ways**: ordered lists of nodes (line objects and polygon objects)
 - **relations**: relations between two or more nodes, ways and/or relations
OpenStreetMap (OSM) – Data model

- OSM makes use of a vector data model (geometries + attributes):
 - geometries
 - nodes: single point objects
 - ways: ordered lists of nodes (line objects and polygon objects)
 - relations: relations between two or more nodes, ways and/or relations
 - attributes
 - tags: key-value pairs
OpenStreetMap (OSM) – Data model

- OSM makes use of a vector data model (geometries + attributes):
 - geometries
 - **nodes**: single point objects
 - **ways**: ordered lists of nodes (line objects and polygon objects)
 - **relations**: relations between two or more nodes, ways and/or relations
 - attributes
 - **tags**: key-value pairs
OpenStreetMap (OSM) – Data model

- OSM makes use of a vector data model (geometries + attributes):
 - geometries
 - **nodes**: single point objects
 - **ways**: ordered lists of nodes (line objects and polygon objects)
 - **relations**: relations between two or more nodes, ways and/or relations
 - attributes
 - **tags**: key-value pairs
OpenStreetMap (OSM) – Data model

- OSM makes use of a vector data model (geometries + attributes):
 - geometries
 - **nodes**: single point objects
 - **ways**: ordered lists of nodes (line objects and polygon objects)
 - **relations**: relations between two or more nodes, ways and/or relations
 - attributes
 - **tags**: key-value pairs
OpenStreetMap quality

• The main concern which still limits the widespread use of OSM
• Quality can be assessed through several parameters:
 o positional accuracy
 o completeness
 o logical consistency
 o semantic accuracy
 o thematic accuracy
 o temporal accuracy
 o up-to-dateness
 o lineage
 o fitness-for-use & fitness-for-purpose
 o ...

POLITECNICO MILANO 1863
OpenStreetMap quality

• The main concern which still limits the widespread use of OSM
• Quality can be assessed through several parameters:
 o positional accuracy
 o completeness
 o logical consistency
 o semantic accuracy
 o thematic accuracy
 o temporal accuracy
 o up-to-dateness
 o lineage
 o fitness-for-use & fitness-for-purpose
 o ...

• OSM quality assessment approaches are:
 o extrinsic, when OSM is compared to a reference dataset
 o intrinsic, when OSM is compared to itself
 • based on OSM history (OSM API / Full History Planet File)
OpenStreetMap quality

• The main **concern** which still limits the widespread use of OSM

• Quality can be assessed through several **parameters**:
 o positional accuracy
 o completeness
 o logical consistency
 o semantic accuracy
 o thematic accuracy
 o temporal accuracy
 o up-to-dateness
 o lineage
 o fitness-for-use & fitness-for-purpose
 o ...

• OSM quality assessment approaches are:
 o **extrinsic**, when OSM is compared to a reference dataset
 o **intrinsic**, when OSM is compared to itself
 • based on **OSM history** (OSM API / Full History Planet File)
Methodology - Architecture & application

- 2 open source software stacks:
 - web application to return real-time results for single OSM nodes/ways
 - aggregated analysis on a predefined area
Methodology - Study area & hypotheses

- **Study area**: Dar es Salaam, Tanzania
 - densely mapped in OSM, mainly thanks to the Dar Ramani Huria project

- **Analysis on nodes (POIs) and ways**:
 - nodes/ways deleted not considered
 - edits considered are only those with changes in tags
 - changes made in a single changeset count as one single new version

- **For the aggregated analysis, data downloaded on May 3, 2018**:
 - 129572 nodes and 1156948 ways
 - edits by 1959 different contributors
 - 150716 and 1592221 versions for nodes and ways, respectively
Methodology - Web application

• “Is OSM up-to-date?”: https://is-osm-uptodate.frafra.eu
 o source code (AGPL v3): https://github.com/frafra/is-osm-uptodate
 o description: https://wiki.openstreetmap.org/wiki/Is_OSM_up-to-date
Methodology - Web application

- “Is OSM up-to-date?”: https://is-osm-uptodate.frafra.eu
 - search & zoom the map on a specific location
Methodology - Web application

- “Is OSM up-to-date?”: https://is-osm-uptodate.frafra.eu
 - choose whether to analyze OSM nodes, ways, or both
Methodology - Web application

- “Is OSM up-to-date?”: https://is-osm-uptodate.frafra.eu
 - choose the attribute to analyze: date of creation, date of last edit, number of versions, number of different contributors, update frequency
Methodology - Web application

- “Is OSM up-to-date?”: https://is-osm-uptodate.frafra.eu
 - visualize color classifications of OSM nodes/ways based on the attribute date of first edit (i.e. creation) of nodes/ways
Methodology - Web application

- “Is OSM up-to-date?”: https://is-osm-uptodate.frafra.eu
 - visualize color classifications of OSM nodes/ways based on the attribute
 - date of last edit of nodes/ways
Methodology - Web application

- “Is OSM up-to-date?”: https://is-osm-uptodate.frafra.eu
 - visualize color classifications of OSM nodes/ways based on the attribute
 - number of revisions (i.e. versions) of nodes/ways
Methodology - Web application

- “Is OSM up-to-date?”: https://is-osm-uptodate.frafra.eu
 - visualize color classifications of OSM nodes/ways based on the attribute
 - number of different contributors who have edited the nodes/ways
Methodology - Web application

- “Is OSM up-to-date?”: https://is-osm-uptodate.frafra.eu
 - visualize color classifications of OSM nodes/ways based on the attribute frequency of update of nodes/ways
Methodology - Web application

- “Is OSM up-to-date?”: https://is-osm-uptodate.frafra.eu
 - click on an OSM node/way to visualize a popup with all the attribute information, tags, and links to visualize/edit the node/way in OSM
Methodology - Web application

- “Is OSM up-to-date?”: https://is-osm-uptodate.frafra.eu
 - adjust the color of the basemap through a colorbar to improve the visualization of OSM nodes/ways
Methodology - Aggregated analysis

- More extensive analysis on a predefined area:
 - aggregate and store results in a database
 - suitable for further GIS processing
Results - Aggregated analysis

• Total number of OSM nodes:
 o 79% of the total area does not contain any node
 o density of nodes progressively increasing from the rural to the most urbanized areas
Results - Aggregated analysis

- Average date of creation of OSM nodes:
 - most of the nodes in the city center created in 2015
 - attention gradually moved to the peripheral areas in 2016, 2017 and 2018
Results - Aggregated analysis

- Average date of last edit of OSM nodes:
 - few of the nodes created in 2014-2015 were later updated
 - mapping in 2018 focused on peripheral areas
Results - Aggregated analysis

- Average **update frequency** of OSM nodes:
 - highest update frequencies in the **city center**
 - most of the nodes created in 2018 have not yet been updated
Results - Aggregated analysis

- Average number of versions of OSM nodes:
 - most of recently created nodes not (yet) updated
 - increase in the number of version when moving to the city center
Results - Aggregated analysis

- Average number of different contributors on OSM nodes:
 - equal to 1 for 53% of the cells, mainly in the outskirts
 - increases towards the city center
Results - Aggregated analysis

- **Total number of different contributors on OSM nodes:**
 - generally equal to 1 in the periphery, increases towards the city center
Conclusions - Quality assessment

- OSM history to unveil the mapping process happened in Dar es Salaam:
 - driven by the Dar Ramani Huria project, started in 2015
 - OSM community was formed
 - mapping gradually expanded from the city center to the periphery
Conclusions - Quality assessment

• OSM history to unveil the mapping process happened in Dar es Salaam:
 o driven by the Dar Ramani Huria project, started in 2015
 o OSM community was formed
 o mapping gradually expanded from the city center to the periphery

• Quality (from the intrinsic assessment):
 o OSM development still at a young stage
 o (where OSM is available) temporal accuracy, up-to-dateness and lineage reflect the same center/periphery trend
Conclusions - Quality assessment

- OSM history to unveil the mapping process happened in Dar es Salaam:
 - driven by the Dar Ramani Huria project, started in 2015
 - OSM community was formed
 - mapping gradually expanded from the city center to the periphery

- Quality (from the intrinsic assessment):
 - OSM development still at a young stage
 - (where OSM is available) temporal accuracy, up-to-dateness and lineage reflect the same center/periphery trend
 - completeness decreases from center to periphery
 - fitness-for-use for the requirements of the Dar Ramani Huria project is high (infrastructure networks)
Conclusions - Future work

- Customize the intrinsic analysis for specific categories of OSM objects:
 - addresses, commercial activities, natural elements, etc. which have very different update cycles

- Combine the history of OSM objects with the history of OSM contributors:
 - data reliability may depend on the contributor’s experience
 - a single quality index?

- Correlate quality elements with demographic/territorial parameters:
 - population density, elevation, land cover/land use, etc.
Conclusions - Future work

- Customize the intrinsic analysis for specific categories of OSM objects:
 - addresses, commercial activities, natural elements, etc. which have very different update cycles

- Combine the history of OSM objects with the history of OSM contributors:
 - data reliability may depend on the contributor’s experience
 - a single quality index?

- Correlate quality elements with demographic/territorial parameters:
 - population density, elevation, land cover/land use, etc.

- FOSS4G technology was key to achieve this!
References & Acknowledgements

- Reference material:
 - SQLite database table with aggregated OSM data: https://frafra.eu/archive/osm/dar-es-salaam.zip
 - corresponding paper: https://tinyurl.com/y7ryboqb
 - this presentation: https://tinyurl.com/ybmrukwt

- Special thanks to:
 Marco Minghini – marco.minghini@ec.europa.eu | @MarcoMinghini

Thank you!

Marco Minghini - marco.minghini@ec.europa.eu | @MarcoMinghini
A Special Issue of interest

• Special Issue: Open Source Geospatial Software
• Journal: Open Geospatial Data, Software and Standards (Springer)
• Guest Editors:
 o Marco Minghini, European Commission - Joint Research Center, Italy
 o Amin Mobasher, Heidelberg University, Germany
 o Victoria Rautenbach, University of Pretoria, South Africa
 o Maria Antonia Brovelli, Politecnico di Milano, Italy
• Articles accepted:
 o standard research articles
 o software articles, focused on open source software of broad interest
• APC: $1030 - some fee waivers available, please contact us!
• Deadline: November 15, 2018
• Link: https://opengeospatialdata.springeropen.com/osgs