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Introduction and overview

* Problem and goal

* Prospective applications

* Open data (vs. restricted)

* Graph partitions, hierarchical method
* Accuracy

* Cost of walking

Detailed National Elevation Model, http://kartverket.no/ (Norwegian Mapping Authority)
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http://kartverket.no/

Problem and goal:

Find route between two arbitrary land area positions.
Take into account
* transport networks
* topography
* terrain type, land cover/use
* infrastructure.
Exploit open-access LiDAR data.
Arbitrary distance and resolution.
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Open-access LIDAR data

Land area in picture:
. L ~ 200.000 km?
* National initiatives

* All-covering aerial LiDAR survey projects
* Open access policy
* «Transparency, efficiency, innovation»

* UK:
* UK Environmental Agency
* Open Government Licence ol DATAGEV-LK
* https://data.gov.uk/

* Norway:

* Norwegian Mapping Authority

* National Detailed Elevation Model
* Creative Commons 4.0

* https://hoydedata.no/LaserInnsyn/
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LiDAR-based DSMs and DEM enable realistic
path planning 7775 gl - Photo
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Applications and prospects
The Telegraph
News | Science

* Archaeology, ancient networks Lost Roman roads could be found as
Environment Agency laser scans whole
* Search and rescue of England from air

* Public transit planning

* Forestry

* Military operations

* Hiking, exercise, recreation

* Robotics, autonomous systems

* Animal migration patterns

* etc.

i

S. Knapton, The Telegrah, 30. Dec. 2017
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Two challenges In cross-country path planning

* Realism, how to adapt data
— Accurate weight (cost) function
— Is a stream traversible; if so, at what cost?
— What about a fence? Etc.
— Answer not always found in data.

* Computational:
— Manage very large graphs
— Find optimum solutions efficiently

Image: US National Park Service, nps.gov
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Two challenges In cross-country path planning

* Realism, how to adapt data
— Accurate weight (cost) function
— Is a stream traversible; if so, at what cost?
— What about a fence? Etc.
— Answer not always found in data.

* Computational:
— Manage very large graphs
— Find optimum solutions efficiently

Image: www.flickr.com
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Road network routing and graphs

* Natural hierarchical structure

* Overlays, multiple levels ‘ U,-"l,‘
. A<
* Transit nodes _ nymg
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* Table look-ups
* Contractions
* Orders of magnitude faster than Dijkstra
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Matrix-graph duality
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Matrix-graph duality (no parallel arcs)

e Breadth-first search <+ matrix multiplication

e Sparse matrix representation

Edited by
PY AdJ acency matrix Jeremy Kepner and John Gilbert

e Vectorization

e Array-based software s
’ Graph Algorithms in the @O
Language of Linear Algebra Ju

R_ GNU Octave

&\ MathWorks:
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Assumptions

o Graph G = (V,E,w), V ={v1,v2,..., o5 }

e Directed

e Positive weight

e No self-loops

e Connected (consider each component by itself)
e (Simple)

e Spatial position xz(v)
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Generalized path planning with graphs

e No natural hierarchical structure
e Additional degree(s) of freedom
e High node density (almost) everywhere

e Finite position accuracy
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What is accuracy?

1. Node position close to true position.

2. Length of graph solution ~ length of real (actual) optimum path.

e Accuracy is an issue in all graph-based approaches!

e Discrete model allows finite set of positions, movements
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Simple strategy

e Very detailed basal graph (eliminates position uncertainty)

e Restrict search to small part of basal graph
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Aggregate nodes

CR,

9 CR,

oU;

OoU;
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Modified strategy

e For a graph Gy with N nodes, partition G into K < N connected components Uy,Us, ... Uk.
e Form a simplified graph G with nodes V(G,) = { Uy,Us,..., Uk }.

e Control the “size” (graph-theoretical radius) of components (accuracy!).

e Expand a solution in GG; to obtain a reduced search space (subgraph) in Gp.

e Can be iterated several times to form hierarchy of simplified graphs, G = { Gy, G1,...Gp }.

e A solution in Gy is found (if it exists).
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Complexity-accuracy trade-off

e As small radius (R) as possible

e As few components (K) as possible
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k-center problems

e Find partition V(G) = UE_, Uy, each G|Uk is (strongly) connected, and

C1l: Minimum K such that max;<rp<x 7(Ug) < R for fixed radius R.
C2: Smallest radius R such that max;<p<x r7(Ug) < R for a fixed K.

e NP-hard optimization: k-center problems

FFI



k-centre algorithm

Find K cluster representatives (CRs) H = { hy,...,hx } and assign nodes to
their nearest CR.

e Start with one random CR, H = { h }.
e Compute distance from A to all nodes.
e Add the H the node farthest from present clusters

e Recompute cluster assignmments for all nodes.
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k-center algorithm

e Requires at most K — max single-source all-shortest-path computations.

e In each iteration, can store disance from new CR to its vicinity (in K —
max X N sparse matrix).

e From this we obtain edge weights in simplified graph.
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The Dijkstra wavefront
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https://timrwalls.wordpress.com/
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1 Modified Dijkstra loop

s < { source node }

N <— number of nodes

A < cut-off distance

c+ 0

U + { all nodes }

while U not empty do
u <— node v € U with minimum distance d(v)
U+ U\{u}

// Additional work:
C < %C + %d(u)/dEUCL (U)
if d(u) > A then

break

// Update distances:
for all v € { active neighbors of u } do
d(v) = min(d(u) + weight(u, v), d(v))

for all v € U do
d(v) = max(A, ¢ ldruct (v))

i
.

FFI




Two extreme cases

e For a hierarchical graph G = { Gy, G1,...G), }, accuracy of solution de-
pends on choice of search levels 0 < hy < ... < h.

e If h =0, exact solution is found on complete basal graph (at high cost).

e If start and end nodes are adjacent in (5}, the distance uncertainty at level
h has the same magnitude as the true distance.
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Accuracy revisited

What is accuracy?

1. Length of hiearchical solution ~ length of basal graph solution

2. Length of basal graph solution ~ length of real (actual) optimum path
Accuracy is an issue in all graph-based approaches!

e Discrete model implies finite set of positions, movements

e Hierarchical approach allows arbitrarily fine basal mesh

e Requires careful selection of levels
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Start node s, target node ¢

Basal graph distance d¢g

Euclidean distance dg

drucL(s,t

Ii\

max c

Scaling factor O/

Number of sets in path

Partition set diameter
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Walking patterns

4
Vertical CoM
. .. displacement
e Uphill: extrinsic g

e Downhill: concentric

e Level and moderate slopes: inverted pendulum i 1 ! } } } ! { &

Double  Single  Double  Single  Double
support  gupport Support  gupport  Support

Lobet, Detrembleur & Hermans (2013)
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Energetics: Power balance

e Kinetic energy FEiin
e Mass m

e Tangential speed v
e Inclination (slope) o

e Locomotive power P,

dt at

e Friction power O\_/

e Gravitational power O

e Air resistance (here: negligible)

Friction coefficient p
Normal force F'y
Gravitational g = 9.81 m/s*
Cross sectional area A

Air density p

~0
_AN

7’ N

mgusina — %pCdA’U‘g
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Metabolic power and Pandolf equation (rewritten)

Metabolic energy per unit mass £

Terrain coefficient 7

Correction term (C.T.) for downhill slopes (Santee et al., 2003)

Metabolic w per unit mass

%(fu;n,a) = 1.5k—v‘gf + nv [ 11;2'0 + 3-69511104} +CT,

“Energy cost of standing still”

“Emergy cost of level walking”

“Gravitational power”

Gross energy cost per unit distance Cy = [%] /v,
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Weight function (example)

* Metabolic energy per unit mass and distance

* Any path is traversible in both directions

* Connected components are strongly connected
* Symmetric with respect to ground condition

* Assymmetric with respect to slope

Metabolic cost [W/kg m]
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Data

Open data:

* LiDAR: Creative Commons 4.0 (No), Open Government (UK), etc.
* OpenStreetMap (ODbL)

* FElVeg (roads, free data)

Restricted data:
* Land cover/land use from national competent authorities (attribution)
* 1:1000 — 1:5000 vector data (detailed infrastructure)
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Open vs restricted data

* OSM + open remote sensing data yield detailed
land cover in some areas (Schultz et al., 2017).

* Dedicated public land cover datasets (e.g. CORINE)
generally good but not sufficiently detailed.

* Currently detailed land cover from national
competent authorities required.

* However, information from (open) LiDAR data
may reduce need for hi-res vector data.

* OSM infrastructure sufficient in rural areas

Copernicus (EU)
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Going the right way:

* LiDAR processing

Geometry
Engine
Open
Source

* Raster/Vector pre-processing

* Data inspection

* Graph representation
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Going the right way:

* Optimum paths a
‘ B

* Processing service (WPS) A ZO0O-Project

pgRouting

urce web mapping

8
* Web application @ opentLayers £ MapServer

* Graph construction, partitioning
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Conclusion

e Open LiDAR data enable realistic cross-country path planning.

e LiDAR reduces the need for detailed restricted data.

e The hierarchical method can eliminate position uncertainty at low computational cost.
e Requires careful selection of search levels.

e Efficient preprocessing is accomplished with k-center algorithm and heuristic Dijkstra.

e Current work to find cost function constrained by biomechanical principles, tuned to empirical
data on walking.
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